Pre-Stressed Concrete Bridge Girder Analysis, Design & Optimization - A Review
نویسندگان
چکیده
منابع مشابه
Optimization of Precast Prestressed Concrete Bridge Girder Systems
60 A practical approach to the optimal design of precast, prestressed concrete highway bridge girder systems is presented. The approach aims at standardizing the optimal design of bridge systems, as opposed to standardizing girder sections. Structural system optimization is shown to be more relevant than conventional girder optimization for an arbitrarily chosen structural system. Bridge system...
متن کاملPart A- Experimental: Experimental Analysis of Crack Propagation in Pre-stressed Concrete Sleepers by Fracture Mechanics
This study investigates propagation of mode I crack in B70 pre-stressed concrete sleepers by fracture mechanics approach. A new experimental analysis is done for notched B70 pre-stressed concrete sleepers with Replica test and image analysis. A scanning electron microscope test (SEM) and an image analysis are applied for the Replica test in order to determine crack length and crack mouth openin...
متن کاملPerformance Testing of Wireless Intelligent Sensor and Actuator Network (WISAN) on a Pre-Stressed Concrete Bridge
With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. Wireless Intelligent Sensor and Actuator Network (WISAN) has hence been developed as a vibration based structural monitoring network that allows extraction of mode shapes from output-on...
متن کاملExperimental Analysis of Fracture and Damage Mechanics of Pre-Stressed Concrete Sleepers B70: Part B- Analysis
Initial cracks occur in high strength concrete sleepers for various reasons, such as shrinkage and wrong curing and long lifetime of over 50 years of sleepers. These cracks may lead to complete failure of the structure. In order to more accurately design the sleepers, fracture mechanics (not strength of materials) should be incorporated. In order to achieve this purpose, it is important to fore...
متن کاملOPTIMAL DESIGN OF NON-PRISMATIC REINFORCED CONCRETE BOX GIRDER BRIDGE: MINIMIZATION OF THE COST AND CO2 EMISSION
This paper presents a computational framework for optimal design of non-prismatic reinforced concrete box girder bridges. The variables include the geometry of the cross section, tapered length, concrete strength and reinforcement of box girders and slabs. These are obtained by the enhanced colliding bodies optimization algorithm to optimizing the cost and again CO2 emission. Loading and design...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2019
ISSN: 2321-9653
DOI: 10.22214/ijraset.2019.4324